Приложение к Словарю отходов

Автор — составитель: Обухов Евгений Николаевич

Вулканы — Выхлопные газы 

 

Вулканы — отдельные возвышенности над каналами и трещинами земной коры, по которым из глубинных магматических очагов выводятся на поверхность продукты извержения. Вулканы обычно имеют форму конуса с вершинным кратером (глубиной от нескольких до сотен метров и диаметром до 1,5 км). Во время извержений иногда происходит обрушение вулканического сооружения с образованием кальдеры — крупной впадины диаметром до 16 км и глубиной до 1000 м.

При подъеме магмы внешнее давление ослабевает, связанные с ней газы и жидкие продукты вырываются на поверхность и происходит извержение вулкана. Если на поверхность выносятся древние горные породы, а не магма, и среди газов преобладает водяной пар, образовавшийся при нагревании подземных вод, то такое извержение называют фреатическим.

ДЕЙСТВУЮЩИЕ ВУЛКАНЫ ЗЕМЛИ Действующим считается вулкан, извергавшийся в историческое время. Всего известно примерно 2500 извержений 500 таких вулканов. На карте отмечены некоторые наиболее известные, а также упомянутые в тексте вулканы.

ОСНОВНЫЕ ТИПЫ ВУЛКАНОВ Экструзивный (лавовый) купол (слева) имеет округлую в плане форму и крутые склоны, прорезанные глубокими бороздами. В жерле вулкана может образоваться пробка застывшей лавы, которая препятствует выделению газов, что впоследствии приводит к взрыву и разрушению купола. Крутосклонный пирокластический конус (справа) сложен чередующимися прослоями пепла и шлаков.

ЩИТОВОЙ ВУЛКАН (слева) с большим кратером (кальдерой), и тонким покровом застывшей лавы на поверхности. Излияния лавы могут происходить из кратера на вершине или через трещины на склонах. Внутри кальдеры, а также на склонах щитового вулкана встречаются воронки обрушения. КОНУС СТРАТОВУЛКАНА (справа) состоит из чередующихся слоев лавы, пепла, шлаков и более крупных обломков. На склоне вулкана показан шлаковый конус.

К действующим относятся вулканы, извергавшиеся в историческое время или проявлявшие другие признаки активности (выброс газов и пара и проч.). Некоторые ученые считают действующими те вулканы, о которых достоверно известно, что они извергались в течение последних 10 тыс. лет.

Например, к действующим следовало относить вулкан Ареналь в Коста-Рике, поскольку при археологических раскопках стоянки первобытного человека в этом районе был обнаружен вулканический пепел, хотя впервые на памяти людей его извержение произошло в 1968, а до этого никаких признаков активности не проявлялось. См. также ВУЛКАНИЗМ.

ИЗВЕРЖЕНИЕ ВУЛКАНА ЭТНА на Сицилии, одного из самых знаменитых вулканов мира. После 1500 г. зарегистрировано более 100 его извержений.

АРАРАТ — потухший вулкан на Армянском нагорье в Турции, состоящий из двух слившихся основаниями конусов — Большого и Малого Арарата.

Вулканы известны не только на Земле. На снимках, сделанных с космических аппаратов, обнаружены огромные древние кратеры на Марсе и множество действующих вулканов на Ио, спутнике Юпитера.

ВУЛКАНИЧЕСКИЕ ПРОДУКТЫ

Лава — это магма, изливающаяся на земную поверхность при извержениях, а затем затвердевающая. Излияние лавы может происходить из основного вершинного кратера, бокового кратера на склоне вулкана или из трещин, связанных с вулканическим очагом. Она стекает вниз по склону в виде лавового потока. В некоторых случаях происходит излияние лавы в рифтовых зонах огромной протяженности. Например, в Исландии в 1783 в пределах цепи кратеров Лаки, вытянувшейся вдоль тектонического разлома на расстояние ок. 20 км, произошло излияние ВУЛКАНЫ12,5 км3 лавы, распределившейся на площади ВУЛКАНЫ570 км2.

ЛАВОВЫЙ ПОТОК — раскаленная жидкая магма, устремляющаяся вниз по склону.

Состав лавы. Твердые породы, образующиеся при остывании лавы, содержат в основном диоксид кремния, оксиды алюминия, железа, магния, кальция, натрия, калия, титана и воду. Обычно в лавах содержание каждого из этих компонентов превышает один процент, а многие другие элементы присутствуют в меньшем количестве.

Существует множество типов вулканических пород, различающихся по химическому составу. Чаще всего встречаются четыре типа, принадлежность к которым устанавливается по содержанию в породе диоксида кремния: базальт — 48-53%, андезит — 54-62%, дацит — 63-70%, риолит — 70-76% (см. таблицу). Породы, в которых количество диоксида кремния меньше, в большом количестве содержат магний и железо. При остывании лавы значительная часть расплава образует вулканическое стекло, в массе которого встречаются отдельные микроскопические кристаллы.

Исключение составляют т.н. фенокристаллы — крупные кристаллы, образовавшиеся в магме еще в недрах Земли и вынесенные на поверхность потоком жидкой лавы. Чаще всего фенокристаллы представлены полевыми шпатами, оливином, пироксеном и кварцем. Породы, содержащие фенокристаллы, обычно называют порфиритами. Цвет вулканического стекла зависит от количества присутствующего в нем железа: чем больше железа, тем оно темнее.

Таким образом, даже без химических анализов можно догадаться, что светлоокрашенная порода — это риолит или дацит, темноокрашенная — базальт, серого цвета — андезит. По различимым в породе минералам определяют ее тип. Так, например, оливин — минерал, содержащий железо и магний, характерен для базальтов, кварц — для риолитов. По мере поднятия магмы к поверхности выделяющиеся газы образуют крошечные пузырьки диаметром чаще до 1,5 мм, реже до 2,5 см. Они сохраняются в застывшей породе.

Так образуются пузырчатые лавы. В зависимости от химического состава лавы различаются по вязкости, или текучести. При высоком содержании диоксида кремния (кремнезема) лава характеризуется высокой вязкостью. Вязкость магмы и лавы в большой степени определяет характер извержения и тип вулканических продуктов. Жидкие базальтовые лавы с низким содержанием кремнезема образуют протяженные лавовые потоки длиной более 100 км (например, известно, что один из лавовых потоков в Исландии протянулся на 145 км).

Мощность лавовых потоков обычно составляет от 3 до 15 м. Более жидкие лавы образуют более тонкие потоки. На Гавайях обычны потоки толщиной 3-5 м. Когда на поверхности базальтового потока начинается затвердевание, его внутренняя часть может оставаться в жидком состоянии, продолжая течь и оставляя за собой вытянутую полость, или лавовый тоннель. Например, на о.Лансарот (Канарские о-ва) крупный лавовый тоннель прослеживается на протяжении 5 км.

Поверхность лавового потока бывает ровной и волнистой (на Гавайях такая лава называется пахоэхоэ) или неровной (аа-лава). Горячая лава, обладающая высокой текучестью, может продвигаться со скоростью более 35 км/ч, однако чаще ее скорость не превышает нескольких метров в час. В медленно движущемся потоке куски застывшей верхней корки могут отваливаться и перекрываться лавой; в результате в придонной части формируется зона, обогащенная обломками.

При застывании лавы иногда образуются столбчатые отдельности (многогранные вертикальные колонны диаметром от нескольких сантиметров до 3 м) или трещиноватость, перпендикулярная охлаждающейся поверхности. При излиянии лавы в кратер или кальдеру формируется лавовое озеро, которое со временем охлаждается. Например, такое озеро образовалось в одном из кратеров вулкана Килауэа на о.Гавайи во время извержений 1967-1968, когда лава поступала в этот кратер со скоростью 1,1*10 6 м3/ч (частично лава впоследствии возвратилась в жерло вулкана).

В соседних кратерах за 6 месяцев толщина корки застывшей лавы на лавовых озерах достигла 6,4 м. Купола, маары и туфовые кольца. Очень вязкая лава (чаще всего дацитового состава) при извержениях через основной кратер или боковые трещины образует не потоки, а купол диаметром до 1,5 км и высотой до 600 м. Например, такой купол сформировался в кратере вулкана Сент-Хеленс (США) после исключительно сильного извержения в мае 1980. Давление под куполом может возрастать, а спустя несколько недель, месяцев или лет он может быть уничтожен при следующем извержении.

В отдельных частях купола магма поднимается выше, чем в других, и в результате над его поверхностью выступают вулканические обелиски — глыбы или шпили застывшей лавы, часто высотой в десятки и сотни метров. После катастрофического извержения в 1902 вулкана Монтань-Пеле на о.Мартиника в кратере образовался лавовый шпиль, который за сутки вырастал на 9 м и в результате достиг высоты 250 м, а спустя год обрушился. На вулкане Усу на о.Хоккайдо (Япония) в 1942 в течение первых трех месяцев после извержения лавовый купол Сева-Синдзан вырос на 200 м.

Слагавшая его вязкая лава пробилась сквозь толщу образовавшихся ранее осадков. Маар — вулканический кратер, образующийся при взрывном извержении (чаще всего при повышенной влажности пород) без излияния лавы. Кольцевой вал из обломочных пород, выброшенных взрывом, при этом не формируется, в отличие от туфовых колец — также кратеров взрывов, которые обычно окружены кольцами обломочных продуктов. Обломочный материал, выбрасываемый в воздух во время извержения, называют тефрой, или пирокластическими обломками.

Так же называются и сформированные ими отложения. Обломки пирокластических пород бывают разного размера. Наиболее крупные из них — вулканические глыбы. Если продукты в момент выброса настолько жидки, что застывают и приобретают форму еще в воздухе, то образуются т.н. вулканические бомбы. Материал размером менее 0,4 см относят к пеплам, а обломки размером от горошины до грецкого ореха — к лапиллям. Затвердевшие отложения, состоящие из лапиллей, называются лапиллиевым туфом.

Выделяются несколько видов тефры, различающихся по цвету и пористости. Светлоокрашенная, пористая, не тонущая в воде тефра называется пемзой. Темная пузырчатая тефра, состоящая из отдельностей лапиллиевой размерности, называется вулканическим шлаком. Кусочки жидкой лавы, недолго находящиеся в воздухе и не успевающие полностью затвердеть, образуют брызги, часто слагающие небольшие конусы разбрызгивания вблизи мест выхода лавовых потоков.

Если эти брызги спекаются, формирующиеся пирокластические отложения называют агглютинатами. Взвешенная в воздухе смесь очень мелкого пирокластического материала и нагретого газа, выброшенная при извержении из кратера или трещин и движущаяся над поверхностью грунта со скоростью ВУЛКАНЫ100 км/ч, образует пепловые потоки. Они распространяются на многие километры, иногда преодолевая водные пространства и возвышенности. Эти образования известны также под названием палящих туч; они настолько раскалены, что светятся ночью.

В пепловых потоках могут присутствовать также крупные обломки, в т.ч. и куски породы, вырванные из стенок жерла вулкана. Чаще всего палящие тучи образуются при обрушении столба пепла и газов, выбрасываемых вертикально из жерла. Под действием силы тяжести, противодействующей давлению извергаемых газов, краевые части столба начинают оседать и спускаться по склону вулкана в виде раскаленной лавины. В некоторых случаях палящие тучи возникают по периферии вулканического купола или в основании вулканического обелиска.

Возможен также их выброс из кольцевых трещин вокруг кальдеры. Отложения пепловых потоков образуют вулканическую породу игнимбрит. Эти потоки транспортируют как мелкие, так и крупные фрагменты пемзы. Если игнимбриты отлагаются достаточно мощным слоем, внутренние горизонты могут иметь настолько высокую температуру, что обломки пемзы плавятся, образуя спекшийся игнимбрит, или спекшийся туф.

По мере остывания породы в ее внутренних частях может образоваться столбчатая отдельность, причем менее четкой формы и крупнее, чем аналогичные структуры в лавовых потоках. Небольшие холмы, состоящие из пепла и глыб разной величины, образуются в результате направленного вулканического взрыва (как, например, при извержениях вулканов Сент-Хеленс в 1980 и Безымянного на Камчатке в 1965).

Направленные вулканические взрывы представляют собой довольно редкое явление. Созданные ими отложения легко спутать с отложениями обломочных пород, с которыми они часто соседствуют. Например, при извержении вулкана Сент-Хеленс непосредственно перед направленным взрывом произошел сход лавины щебня.

Подводные вулканические извержения. Если над вулканическим очагом расположен водоем, при извержении пирокластический материал насыщается водой и разносится вокруг очага. Отложения такого типа, впервые описанные на Филиппинах, сформировались в результате извержения в 1968 вулкана Тааль, находящегося на дне озера; они часто представлены тонкими волнистыми слоями пемзы.

Сели. С извержениями вулканов могут быть сопряжены сели, или грязекаменные потоки. Иногда их называют лахарами (первоначально описаны в Индонезии). Формирование лахаров не является частью вулканического процесса, а представляет собой одно из его последствий. На склонах действующих вулканов в изобилии накапливается рыхлый материал (пепел, лапилли, вулканические обломки), выбрасываемый из вулканов или выпадающий из палящих туч.

Этот материал легко вовлекается в движение водой после дождей, при таянии льда и снега на склонах вулканов или прорывах бортов кратерных озер. Грязевые потоки с огромной скоростью устремляются вниз по руслам водотоков. При извержении вулкана Руис в Колумбии в ноябре 1985 сели, двигавшиеся со скоростью выше 40 км/ч, вынесли на предгорную равнину более 40 млн. м3 обломочного материала. При этом был разрушен город Армеро и погибло ок. 20 тыс. человек. Чаще всего такие сели сходят во время извержения или сразу после него.

Это объясняется тем, что при извержениях, сопровождающихся выделением тепловой энергии, происходят таяние снега и льда, прорыв и спуск кратерных озер и нарушение стабильности склонов. Газы, выделяющиеся из магмы до и после извержения, имеют вид белых струй водяного пара. Когда к ним при извержении примешивается тефра, выбросы становятся серыми или черными. Слабое выделение газов в вулканических районах может продолжаться годами.

Такие выходы горячих газов и паров через отверстия на дне кратера или склонах вулкана, а также на поверхности лавовых или пепловых потоков называют фумаролами. К особым типам фумарол относят сольфатары, содержащие соединения серы, и мофеты, в которых преобладает углекислый газ. Температура фумарольных газов близка к температуре магмы и может достигать 800° С, но может и снижаться до температуры кипения воды (ВУЛКАНЫ100° С), пары которой служат основной составляющей фумарол.

Фумарольные газы зарождаются как в неглубоких приповерхностных горизонтах, так и на больших глубинах в раскаленных породах. В 1912 в результате извержения вулкана Новарупта на Аляске образовалась знаменитая Долина десяти тысяч дымов, где на поверхности вулканических выбросов площадью ок. 120 км2 возникло множество высокотемпературных фумарол. В настоящее время в Долине действует лишь несколько фумарол с довольно низкой температурой.

Иногда от поверхности еще не остывшего лавового потока поднимаются белые струи пара; чаще всего это дождевая вода, нагревшаяся при соприкосновении с раскаленным потоком лавы.

Химический состав вулканических газов. Газ, выделяющийся из вулканов, на 50-85% состоит из водяного пара. Свыше 10% приходится на долю углекислого газа, ок. 5% составляет сернистый газ, 2-5% — хлористый водород и 0,02-0,05% — фтористый водород. Сероводород и газообразная сера обычно содержатся в малых количествах. Иногда присутствуют водород, метан и оксид углерода, а также небольшая примесь различных металлов. В газовых выделениях с поверхности лавового потока, покрытого растительностью, был обнаружен аммиак.

Цунами — огромные морские волны, связанные главным образом с подводными землетрясениями, но иногда возникающие при вулканических извержениях на дне океана, которые могут вызвать образование нескольких волн, следующих с интервалом от нескольких минут до нескольких часов. Извержение вулкана Кракатау 26 августа 1883 и последующее обрушение его кальдеры сопровождалось цунами высотой более 30 м, повлекшим многочисленные человеческие жертвы на побережьях Явы и Суматры.

ТИПЫ ИЗВЕРЖЕНИЙ

Продукты, поступающие на поверхность при вулканических извержениях, существенно различаются по составу и объему. Сами извержения имеют различную интенсивность и продолжительность. На этих характеристиках и основана наиболее употребительная классификация типов извержений. Но бывает, что характер извержений меняется от одного события к другому, а иногда и в ходе одного и того же извержения. Плинианский тип называется по имени римского ученого Плиния Старшего, который погиб при извержении Везувия в 79 н.э.

Извержения этого типа характеризуются наибольшей интенсивностью (в атмосферу на высоту 20-50 км выбрасывается большое количество пепла) и происходят непрерывно в течение нескольких часов и даже дней. Пемза дацитового или риолитового состава образуется из вязкой лавы. Продукты вулканических выбросов покрывают большую площадь, а их объем колеблется от 0,1 до 50 км3 и более. Извержение может завершиться обрушением вулканического сооружения и образованием кальдеры.

Иногда при извержении возникают палящие тучи, но лавовые потоки образуются не всегда. Мелкий пепел сильным ветром со скоростью до 100 км/ч разносится на большие расстояния. Пепел, выброшенный в 1932 вулканом Серро-Асуль в Чили, был обнаружен в 3000 км от него. К плинианскому типу относится также сильное извержение вулкана Сент-Хеленс (шт. Вашингтон, США) 18 мая 1980, когда высота эруптивного столба достигала 6000 м. За 10 часов непрерывного извержения было выброшено ок. 0,1 км3 тефры и более 2,35 т сернистого ангидрида. При извержении Кракатау (Индонезия) в 1883 объем тефры составил 18 км3, а пепловое облако поднялось на высоту 80 км.

Основная фаза этого извержения продолжалась примерно 18 часов. Анализ 25 наиболее сильных исторических извержений показывает, что периоды покоя, предшествовавшие плинианским извержениям, составляли в среднем 865 лет.

Пелейский тип. Извержения этого типа характеризуются очень вязкой лавой, затвердевающей до выхода из жерла с образованием одного или нескольких экструзивных куполов, выжиманием над ним обелиска, выбросами палящих туч. К этому типу относилось извержение в 1902 вулкана Монтань-Пеле на о.Мартиника.

Вулканский тип. Извержения этого типа (название происходит от о. Вулькано в Средиземном море) непродолжительны — от нескольких минут до нескольких часов, но возобновляются каждые несколько дней или недель на протяжении нескольких месяцев. Высота эруптивного столба достигает 20 км. Магма текучая, базальтового или андезитового состава. Характерно формирование лавовых потоков, а пепловые выбросы и экструзивные купола возникают не всегда.

Вулканические сооружения построены из лавы и пирокластического материала (стратовулканы). Объем таких вулканических сооружений довольно велик — от 10 до 100 км3. Возраст стратовулканов составляет от 10 000 до 100 000 лет. Периодичность извержений отдельных вулканов не установлена. К этому типу относится вулкан Фуэго в Гватемале, который извергается каждые несколько лет, выбросы пепла базальтового состава иногда достигают стратосферы, а их объем при одном из извержений составил 0,1 км3.

Стромболианский тип. Этот тип назван по имени вулканического о. Стромболи в Средиземном море. Стромболианское извержение характеризуется непрерывной эруптивной деятельностью на протяжении нескольких месяцев или даже лет и не очень большой высотой эруптивного столба (редко выше 10 км). Известны случаи, когда происходило разбрызгивание лавы в радиусе ВУЛКАНЫ300 м, но почти вся она возвращалась в кратер. Характерны лавовые потоки. Пепловые покровы имеют меньшую площадь, чем при извержениях вулканского типа.

Состав продуктов извержений обычно базальтовый, реже — андезитовый. Вулкан Стромболи находится в состоянии активности на протяжении более 400 лет, вулкан Ясур на о.Танна (Вануату) в Тихом океане — в течение более 200 лет. Строение жерл и характер извержений у этих вулканов очень близки. Некоторые извержения стромболианского типа создают шлаковые конусы, состоящие из базальтового или, реже, андезитового шлака. Диаметр шлакового конуса у основания колеблется от 0,25 до 2,5 км, средняя высота составляет 170 м.

Шлаковые конусы обычно образуются в течение одного извержения, а вулканы называются моногенными. Так, например, при извержении вулкана Парикутин (Мексика) за период с начала его активности 20 февраля 1943 до окончания 9 марта 1952 образовался конус вулканического шлака высотой 300 м, пеплом были засыпаны окрестности, а лава распространилась на площади 18 км2 и уничтожила несколько населенных пунктов.

Гавайский тип извержений характеризуется излияниями жидкой базальтовой лавы. Фонтаны лавы, выбрасываемой из трещин или разломов, могут достигать в высоту 1000, а иногда и 2000 м. Пирокластических продуктов выбрасывается мало, большую их часть составляют брызги, падающие вблизи источника извержения. Лавы изливаются из трещин, отверстий (жерл), расположенных вдоль трещины, или кратеров, иногда вмещающих лавовые озера.

Когда жерло только одно, лава растекается радиально, образуя щитовой вулкан с очень пологими — до 10° — склонами (у стратовулканов шлаковые конусы и крутизна склонов ок. 30°). Щитовые вулканы сложены слоями относительно тонких лавовых потоков и не содержат пепла (например, известные вулканы на о.Гавайи — Мауна-Лоа и Килауэа).

Первые описания вулканов такого типа относятся к вулканам Исландии (например, вулкан Крабла на севере Исландии, расположенный в рифтовой зоне). Очень близки к гавайскому типу извержения вулкана Фурнез на о.Реюньон в Индийском океане.

Другие типы извержений. Известны и другие типы извержений, но они встречаются гораздо реже. В качестве примера можно привести подводное извержение вулкана Сюртсей в Исландии в 1965, в результате которого образовался остров.

РАСПРОСТРАНЕНИЕ ВУЛКАНОВ

Распределение вулканов по поверхности земного шара лучше всего объясняется теорией тектоники плит, согласно которой поверхность Земли состоит из мозаики подвижных литосферных плит. При их встречном движении происходит столкновение, и одна из плит погружается (поддвигается) под другую в т.н. зоне субдукции, к которой приурочены эпицентры землетрясений. Если плиты раздвигаются, между ними образуется рифтовая зона. Проявления вулканизма связаны с этими двумя ситуациями.

Вулканы зоны субдукции располагаются по границе поддвигающихся плит. Известно, что океанские плиты, образующие дно Тихого океана, погружаются под материки и островные дуги. Области субдукции отмечены в рельефе дна океанов глубоководными желобами, параллельными берегу. Полагают, что в зонах погружения плит на глубинах 100-150 км формируется магма, при поднятии которой к поверхности происходит извержение вулканов.

Поскольку угол погружения плиты часто близок к 45°, вулканы располагаются между сушей и глубоководным желобом примерно на расстоянии 100-150 км от оси последнего и в плане образуют вулканическую дугу, повторяющую очертания желоба и береговой линии. Иногда говорят об «огненном кольце» вулканов вокруг Тихого океана. Однако это кольцо прерывисто (как, например, в районе центральной и южной Калифорнии), т.к. субдукция происходит не повсеместно.

ВЕРШИНА ВУЛКАНА ЛАССЕН-ПИК (Каскадные горы, США), последние извержения которого происходили в 1914-1921. Однако термальные источники и грязевые гейзеры свидетельствуют о его активности.

ВЕЛИЧАЙШАЯ ГОРА ЯПОНИИ ФУДЗИЯМА (3776 м над у.м.) — конус «спящего» с 1708 вулкана, покрытый снегом в течение большей части года.

Вулканы рифтовых зон существуют в осевой части Срединно-Атлантического хребта и вдоль Восточно-Африканской системы разломов. Есть вулканы, связанные с «горячими точками», располагающимися внутри плит в местах подъема к поверхности мантийных струй (богатой газами раскаленной магмы), например, вулканы Гавайских о-вов.

Как полагают, цепь этих островов, вытянутая в западном направлении, образовалась в процессе дрейфа на запад Тихоокеанской плиты при движении над «горячей точкой». Сейчас эта «горячая точка» расположена под действующими вулканами о.Гавайи. По направлению к западу от этого острова возраст вулканов постепенно увеличивается. Тектоника плит определяет не только местоположение вулканов, но и тип вулканической деятельности. Гавайский тип извержений преобладает в районах «горячих точек» (вулкан Фурнез на острове Реюньон) и в рифтовых зонах.

Плинианский, пелейский и вулканский типы характерны для зон субдукции. Известны и исключения, например, стромболианский тип наблюдается в различных геодинамических условиях. Вулканическая активность: повторяемость и пространственные закономерности. Ежегодно извергается приблизительно 60 вулканов, причем и в предшествовавший год происходило извержение примерно трети из них. Имеются сведения о 627 вулканах, извергавшихся за последние 10 тыс. лет, и о 530 — в историческое время, причем 80% из них приурочены к зонам субдукции.

Наибольшая вулканическая активность наблюдается в Камчатском и Центрально-Американском регионах, более спокойны зоны Каскадного хребта, Южных Сандвичевых островов и южного Чили.

Вулканы и климат. Полагают, что после извержений вулканов средняя температура атмосферы Земли понижается на несколько градусов за счет выброса мельчайших частиц (менее 0,001 мм) в виде аэрозолей и вулканической пыли (при этом сульфатные аэрозоли и тонкая пыль при извержениях попадают в стратосферу) и сохраняется таковой в течение 1-2 лет. По всей вероятности, такое понижение температуры наблюдалось после извержения вулкана Агунг на острове Бали (Индонезия) в 1962.

ВУЛКАНИЧЕСКАЯ ОПАСНОСТЬ

Извержения вулканов угрожают жизни людей и наносят материальный ущерб. После 1600 в результате извержений и связанных с ними селей и цунами погибло 168 тыс. человек, жертвами болезней и голода, возникших после извержений, стали 95 тыс. человек. Вследствие извержения вулкана Монтань-Пеле в 1902 погибло 30 тыс. человек. В результате схода селей с вулкана Руис в Колумбии в 1985 погибли 20 тыс. человек.

Извержение вулкана Кракатау в 1883 привело к образованию цунами, унесшего жизни 36 тыс. человек. Характер опасности зависит от действия разных факторов. Лавовые потоки разрушают здания, перекрывают дороги и сельскохозяйственные земли, которые на много столетий исключаются из хозяйственного использования, пока в результате процессов выветривания не сформируется новая почва. Темпы выветривания зависят от количества атмосферных осадков, температурного режима, условий стока и характера поверхности.

Так, например, на более увлажненных склонах вулкана Этна в Италии земледелие на лавовых потоках возобновилось только через 300 лет после извержения. Вследствие вулканических извержений на крышах зданий накапливаются мощные слои пепла, что грозит их обрушением. Попадание в легкие мельчайших частиц пепла приводит к падежу скота. Взвесь пепла в воздухе представляет опасность для автомобильного и воздушного транспорта. Часто на время пеплопадов закрывают аэропорты.

Пепловые потоки, представляющие собой раскаленную смесь взвешенного дисперсного материала и вулканических газов, перемещаются с большой скоростью. В результате от ожогов и удушья погибают люди, животные, растения и разрушаются дома. Древнеримские города Помпеи и Геркуланум попали в зону действия таких потоков и были засыпаны пеплом во время извержения вулкана Везувий.

Вулканические газы, выделяемые вулканами любого типа, поднимаются в атмосферу и обычно не причиняют вреда, однако частично они могут возвращаться на поверхность земли в виде кислотных дождей. Иногда рельеф местности способствует тому, что вулканические газы (сернистый газ, хлористый водород или углекислый газ) распространяются близ поверхности земли, уничтожая растительность или загрязняя воздух в концентрациях, превышающих предельные допустимые нормы.

Вулканические газы могут наносить и косвенный вред. Так, содержащиеся в них соединения фтора захватываются пепловыми частицами, а при выпадении последних на земную поверхность заражают пастбища и водоемы, вызывая тяжелые заболевания скота. Таким же образом могут быть загрязнены открытые источники водоснабжения населения. Огромные разрушения вызывают также грязекаменные потоки и цунами.

Прогноз извержений. Для прогноза извержений составляются карты вулканической опасности с показом характера и ареалов распространения продуктов прошлых извержений и ведется мониторинг предвестников извержений. К таким предвестникам относится частота слабых вулканических землетрясений; если обычно их количество не превышает 10 за одни сутки, то непосредственно перед извержением возрастает до нескольких сотен.

Ведутся инструментальные наблюдения за самыми незначительными деформациями поверхности. Точность измерений вертикальных перемещений, фиксируемых, например, лазерными приборами, составляет 0,25 мм, горизонтальных — 6 мм, что позволяет выявлять наклон поверхности всего в 1 мм на полкилометра. Данные об изменениях высоты, расстояния и наклонов используются для выявления центра вспучивания, предшествующего извержению, или прогибания поверхности после него.

Перед извержением повышаются температуры фумарол, иногда изменяется состав вулканических газов и интенсивность их выделения. Предвестниковые явления, предшествовавшие большинству достаточно полно документированных извержений, сходны между собой. Однако с уверенностью предсказать, когда именно произойдет извержение, очень трудно.

Вулканологические обсерватории. Для предупреждения возможного извержения ведутся систематические инструментальные наблюдения в специальных обсерваториях. Самая старая вулканологическая обсерватория была основана в 1841-1845 на Везувии в Италии, затем с 1912 начала действовать обсерватория на вулкане Килауэа на о.Гавайи и примерно в то же время — несколько обсерваторий в Японии.

Мониторинг вулканов проводится также в США (в т.ч. на вулкане Сент-Хеленс), Индонезии в обсерватории у вулкана Мерапи на о.Ява, в Исландии, России Институтом вулканологии РАН (Камчатка), Рабауле (Папуа — Новая Гвинея), на островах Гваделупа и Мартиника в Вест-Индии, начаты программы мониторинга в Коста-Рике и Колумбии.

Методы оповещения. Предупреждать о грозящей вулканической опасности и принимать меры по уменьшению последствий должны гражданские власти, которым вулканологи предоставляют необходимую информацию. Система оповещения населения может быть звуковой (сирены) или световой (например, на шоссе у подножья вулкана Сакурадзима в Японии мигающие сигнальные огни предупреждают автомобилистов о выпадении пепла).

Устанавливаются также предупреждающие приборы, которые срабатывают при повышенных концентрациях опасных вулканических газов, например сероводорода. На дорогах в опасных районах, где идет извержение, размещают дорожные заграждения. Уменьшение опасности, связанной с вулканическими извержениями. Для смягчения вулканической опасности используются как сложные инженерные сооружения, так и совсем простые способы. Например, при извержении вулкана Миякедзима в Японии в 1985 успешно применялось охлаждение фронта лавового потока морской водой.

Устраивая искусственные бреши в застывшей лаве, ограничивающей потоки на склонах вулканов, удавалось изменять их направление. Для защиты от грязекаменных потоков — лахаров — применяют оградительные насыпи и дамбы, направляющие потоки в определенное русло. Для избежания возникновения лахара кратерное озеро иногда спускают с помощью тоннеля (вулкан Келуд на о.Ява в Индонезии). В некоторых районах устанавливают специальные системы слежения за грозовыми тучами, которые могли бы принести ливни и активизировать лахары. В местах выпадения продуктов извержения сооружают разнообразные навесы и безопасные убежища.

ЛИТЕРАТУРА

Лучицкий И.В. Основы палеовулканологии. М., 1971 Мелекесцев И.В. Вулканизм и рельефообразование. М., 1980 Влодавец В.И. Справочник по вулканологии. М., 1984 Действующие вулканы Камчатки, тт. 1-2. М., 1991

Энциклопедия Кольера. — Открытое общество. 2000, Сайт http://dic.academic.ru, Словари и энциклопедии на Академике 

 

Вулканы — (по имени бога огня Вулкана), геологические образования, возникающие над каналами и трещинами в земной коре, по которым извергаются на земную поверхность из глубинных магматических источников лавы, горячие газы и обломки горных пород. Обычно вулканы представляют отдельные горы, сложенные продуктами извержений.

Вулканы разделяются на действующие, уснувшие и потухшие. К первым относятся: вулканы, извергающиеся в настоящее время постоянно или периодически; вулканы, об извержениях которых существуют исторические данные; вулканы, об извержениях которых нет сведений, но которые выделяют горячие газы и воды (сольфатарная стадия). К уснувшим относят вулканы, об извержениях которых нет сведений, но они сохранили свою форму и под ними происходят локальные землетрясения. Потухшими называются сильно разрушенные и размытые вулканы без каких-либо проявлений вулканической активности.

В зависимости от формы подводящих каналов вулканы разделяют на центральные и трещинные.

Глубинные магматические очаги могут находиться в верхней мантии на глубине порядка 50—70 км (вулканы Ключевская Сопка на Камчатке и Килауэа на Гавайских островах) или в земной коре на глубине 5—6 км (вулкан Везувий, Италия) и глубже.

Вулканические явления. Извержения бывают длительными (в течение нескольких лет, десятилетий и столетий) и кратковременными (измеряемые часами). К предвестникам извержения относятся вулканические землетрясения, акустические явления, изменения магнитных свойств и состава фумарольных газов и другие явления. Извержение обычно начинается усилением выбросов газов сначала вместе с тёмными, холодными обломками лав, а затем с раскалёнными.

Эти выбросы в некоторых случаях сопровождаются излиянием лавы. Высота подъёма газов, паров воды, насыщенных пеплом и обломками лав, в зависимости от силы взрывов, колеблется от 1 до 5 км (во время извержения вулкана Безымянного на Камчатке в 1956 она достигла 45 км). Выброшенный материал переносится на расстояния от нескольких до десятков тыс. км. Объём выброшенного обломочного материала порой достигает нескольких км3.

При некоторых извержениях концентрация вулканического пепла в атмосфере бывает настолько большой, что возникает темнота, подобная темноте в закрытом помещении. Это имело место в 1956 в посёлке Ключи, расположенном в 40 км от вулкана Безымянного. Извержение представляет собой чередование слабых и сильных взрывов и излияний лав. Взрывы максимальной силы называются кульминационным пароксизмом. После них происходит уменьшение силы взрывов и постепенное прекращение извержений. Объёмы излившейся лавы — до десятков км3.

Типы извержений. Извержения вулканов не всегда одинаковы. В зависимости от количественных соотношений извергаемых вулканических продуктов (газообразных, жидких и твёрдых) и вязкости лав выделены 4 главных типа извержений: эффузивный, смешанный, экструзивный и эксплозивный, или, как их чаще называют, соответственно — гавайский, стромболианский, купольный и вулканский.

Гавайский тип извержения, создающий чаще всего щитовидные вулканы, отличается относительно спокойным излиянием жидкой (базальтовой) лавы, образующей в кратерах огненно-жидкие озёра и лавовые потоки. Газы, содержащиеся в небольшом количестве, образуют фонтаны, выбрасывающие комки и капли жидкой лавы, которые вытягиваются в полёте в тонкие стеклянные нити (вулкан Килауэа).

В стромболианском типе извержений, создающем обычно стратовулканы, наряду с достаточно обильными излияниями жидких лав базальтового и андезито-базальтового состава (образуют иногда очень длинные потоки), преобладающими являются небольшие взрывы, которые выбрасывают куски шлака и разнообразные витые и веретенообразные бомбы (вулканы Стромболи на Липарских островах, Михара, некоторые извержения Ключевской Сопки).

Для купольного типа характерно выжимание и выталкивание вязкой (андезитовой, дацитовой или риолитовой) лавы сильным напором газов из канала В. и образование куполов (вулканы Пюи-де-Дом и Центральный Семячик на Камчатке), криптокуполов (вулкан Сёва-Синдзан), конусокуполов (вулкан Иванова) и обелисков (вулкан Шивелуч на Камчатке).

В вулканском типе большую роль играют газообразные вещества, производящие взрывы и выбросы огромных чёрных туч, переполненных большим количеством обломков лав. Лавы вязкие андезитового, дацитового или риолитового состава образуют небольшие потоки (вулканы Вулькано, Авачинская Сопка и Карымская Сопка на Камчатке). Каждый из главных типов извержений разделяется на несколько подтипов. Из них особо выделяются пелейский и катмайский, промежуточные между купольным и вулканским типами.

Характерной особенностью первого является образование куполов и направленные взрывы очень горячих газовых туч, переполненных самовзрывающимися в полёте и при скатывании по склону вулканов обломками и глыбами лав (вулкан Монтань-Пеле на острове Мартиника). Извержения катмайского подтипа отличаются выбрасыванием очень горячего, весьма подвижного песчаного потока (вулкан Катмай на Аляске).

Куполообразующие извержения иногда сопровождаются раскалёнными или достаточно охлажденными лавинами, а также грязевыми потоками. Ультравулканский подтип выражается в весьма сильных взрывах, выбрасывающих огромные количества обломков лав и пород стенок канала. Извержения подводных вулканов, расположенных в очень глубоких местах, обычно незаметны, так как большое давление воды препятствует взрывным извержениям.

В мелких местах извержения выражаются взрывами (выбросами) огромных количеств пара и газов, переполненных мелкими обломками лавы. Взрывные извержения продолжаются до тех пор, пока извергаемый материал не образует острова, поднимающегося над уровнем моря. После чего взрывы сменяются или чередуются с излияниями лавы.

Продукты извержения вулканов бывают газообразными, жидкими и твёрдыми. В зависимости от характера извержений и состава магмы на поверхности образуются сооружения различной формы и высоты. Они представляют собой вулканические аппараты, состоящие из трубообразного или трещинного канала, жерла (самой верхней части канала), окружающих канал с разных сторон мощных накоплений лав и вулканообломочных продуктов и кратера (чашеобразной впадины, расположенной на вершине сооружения).

Наиболее распространёнными формами сооружений являются конусообразные (при преобладании выбросов обломочного материала), куполообразные (при выжимании вязкой лавы) и пологие щитовидные (при преобладании излияний жидкой лавы). Извержения происходят не только через вершинный главный кратер, но и через побочные (паразитические) кратеры, расположенные на склонах и на некотором удалении от них.

При однократных извержениях газов, пробивающих канал до земной поверхности, нередко образуются воронкообразные впадины, окаймленные кольцевым валом из глыб различных пород; такие воронки, нередко заполненные водой, называются маарами. Сильные извержения иногда сопровождаются обрушениями части вулканического сооружения, а часто и прилегающей местности; образующиеся впадины диаметром от нескольких км до первых десятков км называются Кальдерами.

Географическое размещение действующих вулканов. Современные вулканы расположены вдоль молодых горных хребтов или вдоль крупных разломов (грабенов) на протяжении сотен и тысяч км в тектонически подвижных областях. Почти две трети вулканов сосредоточены на островах и берегах Тихого океана (Тихоокеанский вулканический пояс). Из других районов по количеству действующих вулканов выделяется район Атлантического океана…

Причины деятельности вулканов. Географическое размещение вулканов указывает на тесную связь между поясами вулканической деятельности и дислоцированными подвижными зонами земной коры. Разломы, образующиеся в этих зонах, являются каналами, по которым происходит движение магмы к земной поверхности. Движение магмы по трещинам и трубообразным каналам к земной поверхности, по-видимому, происходит под влиянием тектонических процессов.

На глубине, когда давление растворённых в магме газов становится больше давления вышележащих толщ, газы начинают стремительно продвигаться и увлекать магму к земной поверхности. Возможно, что газовое давление создаётся во время процесса кристаллизации магмы, когда жидкая часть её обогащается остаточными газами и паром. Магма как бы вскипает и вследствие интенсивного выделения газообразных веществ в очаге создаётся высокое давление, которое также может явиться одной из причин извержения.

Лит.: Ритман А., Вулканы и их деятельность, пер. с нем., М., 1964; Тазиев Г., Вулканы, пер. с франц., М., 1963; Bullard F. М., Volcanoes: in history, in theory, in eruption, [Austin], 1962; Catalogue of the active volcanoes of the World including solfatara fields, pt 1—, Napoli, 1951—.

В. И. Влодавец.            .

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978, Сайт http://dic.academic.ru, Словари и энциклопедии на Академике

 

Выветривание (англ. weathering, degradation, disengagement) — процесс разрушения и изменения горной породы в условиях земной поверхности под влиянием механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит выветривание, различают атмосферное (или наземное) выветривание и подводное (или гальмиролиз). Основные типы выветривания по роду воздействия на горные породы; физическое, химическое и органическое (биологическое).

Физическое выветривание вызывает механический распад горной породы на обломки и происходит вследствие быстрого изменения объёма поверхностных частей пород и последующего их растрескивания под влиянием резких суточных колебаний температуры, замерзания и оттаивания воды в трещинах.

Химическое выветривание ведёт к изменению химического состава горной породы процессами окисления, гидратации и др. с образованием минералов, более стойких в условиях земной поверхности.

Биологическое выветривание сводится к механическому и химическому изменению пород, вызываемому жизнедеятельностью организмов. Биологические факторы играют важную роль в своеобразном типе выветривания — почвообразовании.

Все виды выветривания действуют одновременно, но в зависимости от климата тот или иной вид преобладает. Физическое выветривание особенно характерно для территорий с сухим (аридным) климатом и высокогорных областей. В условиях холодного климата при частых колебаниях температуры около 0°С механическое разрушение пород происходит под влиянием морозного выветривания, химического и органического. Выветривания характерны для влажных, умеренных, тропических и субтропических климатов. Скорость и степень выветривания, мощность продуктов выветривания и их состав зависят также от рельефа, вещественного состава и структуры горной породы. Накопления непереотложенных продуктов образуют коры выветривания, с которыми связаны месторождения многих полезных ископаемых (каолинов, oxp, руд железа, алюминия и др.).

Горная энциклопедия. — М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984—1991, Сайт http://dic.academic.ru, Словари и энциклопедии на Академике 

 

Выделение — экскреция, выведение из организма конечных продуктов обмена веществ, избытка воды, солей, а также биологически активных веществ, чужеродных и токсичных соединений, образовавшихся в организме в процессе метаболизма или поступивших с пищей. Выделению принадлежит важнейшая роль в поддержании постоянства состава жидкостей внутренней среды — необходимого условия эффективной деятельности разл. органов и систем.

У многих морских беспозвоночных выделение происходит диффузно, через поверхность тела; у большинства животных есть специальные органы выделения. У некоторых животных (нематоды, ракообразные, паукообразные, многоножки, насекомые, некоторые пресмыкающиеся и другие.) конечные продукты обмена могут откладываться в органах накопления или в тканях покровов, которые сбрасываются во время линьки. У водных животных в выделении участвуют жабры, слизистые оболочки и покровы тела, через которые происходит диффузия некоторых веществ в окружающую среду, их секреция в составе слизи.

У морских гомойосмотических животных выделение избытка солей обеспечивается ректальными железами (хрящевые рыбы), «хлоридными» клетками в жабрах (рыбы, ракообразные), солевыми железами (птицы, пресмыкающиеся). В. одного из конечных продуктов метаболизма — двуокиси углерода и других газов происходит через лёгкие или жабры. У млекопитающих вода и некоторые соли выделяются и потовыми железами.

Экскретируемые конечные продукты азотистого обмена могут быть различными: аммиак (так называемые аммониотелические животные — пресноводные и морские беспозвоночные, в том числе водные насекомые, и костистые рыбы, личинки и постоянно живущие в воде земноводные, частично наземные равноногие раки), мочевина (уреотелические животные — наземные планарии, хрящевые рыбы, взрослые земноводные, млекопитающие), мочевая кислота (урикотелические животные — наземные брюхоногие моллюски, наземные насекомые, пресмыкающиеся, птицы), гуанин (гуанотелические животные— скорпионы, пауки). У земноводных и пресмыкающихся прослеживаются переходы между аммониотелией, уреотелией и урикотелией.

Характер и соотношение конечных продуктов азотистого обмена имеют приспособит, значение; у форм, нуждающихся в экономном расходовании воды, например, у пресмыкающихся и птиц, выделяются мочевая кислота и её слаборастворимые соли, что сокращает количество выделяемой при экскреции воды.

У растений различают активное выделение — специализированными желёзками (капельножидкой воды, нектара) либо всей поверхностью клеток (защитные слизи, экзоферменты), и пассивное выделение — смыв и выщелачивание осадками (катионы, углеводы), испарение (терпены, спирты, альдегиды), В. ионов (или обмен на поглощаемые ионы) для установления электростатнч. равновесия со средой (ионы минер, солей, органичекской кислоты и аминокислоты).

Масса выделяемых веществ достигает (в зависимости от времени суток и сезона) 8—12% от массы продуктов, образованных в процессе фотосинтеза и поступления солей. Благодаря В. веществ растения многократно используют элементы питания в сообществе, поддерживают жизнь микрофлоры, осуществляют аллелопатию.

Биологический энциклопедический словарь. Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986, Сайт http://dic.academic.ru, Словари и энциклопедии на Академике 

 

Выделение — экскреция, освобождение организма от конечных продуктов обмена, чужеродных веществ и избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в организме. В результате обмена веществ в клетке из неё в межклеточную жидкость, а затем в кровь поступают углекислый газ, некоторые аминокислоты, мочевина и др. При потреблении избытка солей, пищевых веществ, а также при нарушении обмена в крови повышается концентрация неорганических или органических веществ (например, глюкозы, аминокислот).

Органам выделения принадлежит важная роль в сохранении постоянства состава жидкостей внутренней среды (гомеостаза). В процессе выделения у позвоночных участвуют почки, лёгкие или жабры, железы желудочно-кишечного тракта, кожа, потовые, солевые железы (носовые, ректальные); у беспозвоночных — протонефридии, метанефридии, жабры и другие, у простейших — сократительные вакуоли. У некоторых животных продукты обмена и соли откладываются в органах накопления или тканях покровов, которые сбрасываются во время линьки.

Выделение углекислого газа и других летучих веществ происходит через лёгкие или жабры; вода, соли, продукты азотистого обмена (аммиак, мочевина, мочевая кислота) в основном выделяются почками, соли натрия у морских птиц и рептилий выделяются носовыми железами, у рыб — жабрами или ректальной железой.

У человека весом 70 кг, при нормальном пищевом режиме, за сутки через лёгкие удаляется 10 000—20 000 ммоль углекислого газа; с мочой выводятся нелетучие минеральные и органические кислоты и только 1—2 ммоль бикарбонатов; В. воды с мочой — 1,2 л, с по́том — 0,5 л, с калом — 0,1 л; общее количество азота, экскретируемого с мочой, — 11 г, с калом — 1,7 г, с по́том — 1 г. Почки выделяют в сутки 21 г мочевины, 0,63 г мочевой кислоты, 0,56 г гиппуровой кислоты, 1,05 г креатинина, 0,78 г аммиака.

Лит.: Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967.

Ю. В. Наточин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978, Сайт http://dic.academic.ru, Словари и энциклопедии на Академике

 

Выхлопные газы (отходящие газы) — отработавшее в двигателе рабочее тело. Являются продуктами окисления и неполного сгорания углеводородного топлива. Выбросы выхлопных газов — основная причина превышения допустимых концентраций токсичных веществ и канцерогенов в атмосфере крупных городов, образования смогов, являющихся частой причиной отравления в замкнутых пространствах.

Количество выделяемых в атмосферу автомобилями загрязняющих веществ определяется массовым выбросом газов и составом отходящих газов.

Количество отходящих газов автомобилей

В основном определяется массовым расходом топлива автомобилями. Расход по расстоянию нормируется и обычно указывается производителями (одна из потребительских характеристик). В отношении суммарного объема выходящих из глушителя выхлопных газов приблизительно можно ориентироваться на такую цифру — один литр сжигаемого бензина приводит к образованию примерно 16 кубометров или 16000 литров смеси различных газов.

ВАЗ 2110 1,5k литра         ВАЗ 2110 1,5i литра          Mitsubishi Colt 5-D 1.1i литра     ВАЗ 11113 0,75k литра ВАЗ 21055 1,5D литра

Расход в «городском» режиме, л/100км     9,1      8,6      7,0      6,4      5,7

Расход, равномерно 60 км/ч, л/100км         4,5      3,5      3,7      3,2      3,8

k — карбюраторный двигатель

i — инжекторный двигатель

D — дизельный двигатель

плотность бензина при +20С колеблется от 0,69 до 0,81 г/см³

плотность дизельного топлива при +20С по ГОСТ 305-82 не более 0,86 г/см³

Состав автомобильных выхлопных газов

Бензиновые двигатели   Дизельные двигатели

N2, об.%                 74—77           76—78

O2, об.%               0,3—8,0         2,0—18,0

H2O (пары), об.%  3,0—5,5     0,5—4,0

CO2, об.%            0,0—16,0       1,0—10,0

CO*, об.%             0,1—5,0         0,01—0,5

Оксиды азота*, об.%   0,0—0,8   0,0002—0,5000

Углеводороды*, об.%  0,2—3,0   0,09—0,500

Альдегиды*, об.%   0,0—0,2    0,001—0,009

Сажа**, г/м3     0,0—0,04      0,01—1,10

Бензпирен—3,4**, г/м3  10—20×10−6  10×10−6

* Токсичные компоненты

** Канцерогены

Влияние выхлопных газов на здоровье человека

Выхлопная труба легкового автомобиля

Наибольшую опасность представляют оксиды азота, примерно в 10 раз более опасные, чем угарный газ, доля токсичности альдегидов относительно невелика и составляет 4—5 % от общей токсичности выхлопных газов. Токсичность различных углеводородов сильно отличается, однако особенно, что непредельные углеводороды в присутствии диоксида азота фотохимически окисляются образуя ядовитые кислородсодержащие соединения — составляющие смогов.

Качество дожигания на современных катализаторах таково, что доля СО после катализатора обычно менее 0,1 %.

Обнаруженные в газах полициклические ароматические углеводороды — сильные канцерогены. Среди них наиболее изучен бензпирен, кроме него обнаружены производные антрацена:

1,2—бензантрацен

1,2,6,7—дибензантрацен

5,10—диметил—1,2—бензантрацен

Кроме того при использовании сернистых бензинов в отходящие газы могут входить оксиды серы, при применении этилированных бензинов — свинец (Тетраэтилсвинец), бром, хлор, их соединения. Считается, что аэрозоли галоидных соединений свинца могут подвергаться каталитическим и фотохимическим превращениям, участвуя в образовании смога.

Длительный контакт со средой, отравленной выхлопными газами автомобилей, вызывает общее ослабление организма — иммунодефицит. Кроме того, газы сами по себе могут стать причиной различных заболеваний. Например, дыхательной недостаточности, гайморита, ларинготрахеита, бронхита, бронхопневмонии, рака лёгких. Кроме того, выхлопные газы вызывают атеросклероз сосудов головного мозга. Опосредованно через легочную патологию могут возникнуть и различные нарушения сердечно-сосудистой системы.

Отравления в замкнутом пространстве

Довольно часты случаи отравления выхлопными газами в том числе со смертельными исходами автомобилистов в гаражах, закрытых стоянках и внутри автомобилей (утечки в салон) при отсутствии или плохой вентиляции. Для борьбы с такими случаями вводятся строительные нормы на вентиляцию сооружений, связанных с эксплуатацией и обслуживанием автомобилей, а также рекомендации автомобилистам.

Пути снижения выбросов и токсичности

Стимулом к сокращению объёмов предполагается заинтересованность в сокращении расхода топлива (крупная статья расходов в автомобильном транспорте).

Колоссальное влияние на количество выбросов (не считая сжигания топлива и времени) играет организация движения автомобилей в городе (значительная часть выбросов происходит в пробках и на светофорах). При удачной организации возможно применение менее мощных двигателей, при невысоких (экономичных) промежуточных скоростях.

Существенно снизить содержание углеводородов в отходящих газах, более чем в 2 раза, возможно применением в качестве топлива попутных нефтяных (пропан, бутан), или природного газов, при том, что главный недостаток природного газа — низкий запас хода, для города не столь значим.

Кроме состава топлива, на токсичность влияет состояние и настройка двигателя (особенно дизельного — выбросы сажи могут увеличиваться до 20 раз и карбюраторного — до 1,5—2 раз изменяются выбросы окислов азота).

Значительно снижены выбросы (снижен расход топлива) в современных конструкциях двигателей с инжекторным питанием стабильной обеднённой смесью неэтилированного бензина с установкой катализатора, газовых двигателях, агрегатах с нагнетателями и охладителями воздуха, применением гибридного привода. Однако подобные конструкции сильно удорожают автомобили.

Испытания SAE показали, что эффективный способ снижения выбросов окислов азота (до 90 %) и в целом токсичных газов — впрыск в камеру сгорания воды.

Законодательное регулирование

Контролируется качественный состав изготавливаемого и реализуемого топлива (в России это стандарты на топливо, региональные требования, в Европе нормативы ЕВРО).

Предусмотрен контроль за состоянием и регулировками автомобилей. В России является обязанностью органов технического осмотра ГАИ периодически контролировать доли оксидов углерода и углеводородов в выхлопе на двух частотах вращения, состояние предусмотренных систем нейтрализации на бензиновых двигателях (по ГОСТ Р 52033-2003) и дымность на дизельных двигателях (по ГОСТ Р 52160-2003).

В России вводятся повышенные ставки транспортного налога на мощность двигателя автомобиля.

Топливо облагается специальными акцизами.

Предусмотрены нормативы на выпускаемые автомобили. В России и европейских странах приняты стандарты ЕВРО, задающие как токсичность, так и количественные показатели, например:

По Евро-3 выбросы: СH до 0,2 г/км, CO до 2,3 г/км и NOy до 0,15 г/км

По Евро-4 выбросы: СH до 0,1 г/км, CO до 1,0 г/км и NOy до 0,08 г/км

В некоторых регионах вводятся ограничения на движение большегрузного автотранспорта (например в г.Москва)

Считается, что распространение подобных норм на районы с нормальной экологической обстановкой может создавать лишние затраты.

Википедия, сайт http://ru.wikipedia.org.

 

Полностью Приложение к Словарю отходов смотрите здесь:

Приложение к Словарю отходов

 

Словарь отходов смотрите здесь: 

Словарь отходов

konsulmirКниги, СловариПриложение к Словарю отходовПриложение к Словарю отходов Автор - составитель: Обухов Евгений Николаевич Вулканы - Выхлопные газы    Вулканы - отдельные возвышенности над каналами и трещинами земной коры, по которым из глубинных магматических очагов выводятся на поверхность продукты извержения. Вулканы обычно имеют форму конуса с вершинным кратером (глубиной от нескольких до сотен метров и диаметром до 1,5...Организации и консульства. Праздники, календари, выходные. Справочная информация. Анекдоты, юмор